The potential bioavailability of organic C, N, and P through enzyme hydrolysis in soils of the Mojave Desert

نویسندگان

  • Jeffrey A. Nadeau
  • Robert G. Qualls
  • Robert S. Nowak
  • Robert R. Blank
چکیده

Increases in the growth rate of plants and microbes in the Mojave Desert in response to predicted increases in precipitation and CO2 due to global climate change may induce nutrient limitations. This study was designed to measure the pool of potentially bioavailable nutrients in soils of the Mojave Desert. Soils were collected from shrub and interspace microsites and then subjected to amendment with buffered solutions of an excess of various enzymes. The products of each enzyme reaction were then measured and the maximum quantity of hydrolyzable substrates was calculated. In interspace and shrub microsite soils, respectively, 14.5 and 9.7% of the organic C in the form cellulose, 60.0–97.8% and 61.2– 100.0% of the organic N in the form protein, and 44.0 and 57.5% of the organic P was hydrolyzable. There were significant differences between microsites for hydrolyzable substrate using all enzyme amendments, except protease. We propose that accumulations of hydrolyzable organic C, N, and P in the Mojave Desert could be a result of the persistently dry soil conditions often found in desert ecosystems and the immobilization of enzymes, which may result in low diffusivity of soil substrates and enzymes and, accordingly, little degradation of organic C, N, and P. Alternatively, rapid nutrient cycling and immobilization by soil microorganisms could account for accumulations of organic C, N, and P. Further refinement of the methods used in this study could lead to a valuable tool for the assessment of potential bioavailability of nutrients in a variety of soils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Impacts of Land Use Change in Soil Carbon and Nitrogen Stocks (Case Study Shahmirzad Lands, Semnan Province, Iran)

Soil carbon and nitrogen contents play an important role in sustaining soil physical and chemical quality and help to have healthy environments. The continues conversion of rangelands to arable lands has the potential to change carbon and nitrogen sequestration. In this study to evaluate the effects of land use change on soil organic carbon and nitrogen stock, forty samples collected from north...

متن کامل

Influence of Fibrolytic Enzymes on the in vitro Hydrolysis and Fermentation of Different Types of Roughages Treatment

The effects of pre-treating different types of roughages with alkali on the efficacy of exogenous fibrolytic enzymes for improving their digestibility were studied in vitroin factorial arrangement 4 × 3 × 5 (enzyme, treatment and roughage types). Two fibrolytic feed enzymes novozyme (N) and celloclast (C) their combination (N+C) were evaluated for their potential to improve in vitrodegradation ...

متن کامل

Potential N mineralization and availability to irrigated maize in a calcareous soil amended with organic manures and urea under field conditions

Quantification of the Nitrogen (N)-supplying capacity of organic manures provides an important insight into more effective N management practices. The aims of this study were to determine the potential N mineralization of cow manure (CM), poultry manure (PM), urea fertilizer (UF) and the combined use of cow manure + urea fertilizer (CM + UF) for silage maize (Zea mays L.) in a calcareous so...

متن کامل

Interactive Effects of Salinity and Cadmium Pollution on Enzyme Activity in a Calcareous Soil Treated With Plant Residues

Abiotic stresses such as salinity and contamination individually have a negative effect on the soil enzyme activities, whereas addition of organic matter to soil can alleviate the negative impacts of stresses on the enzyme activity. However, the combined effects of these stresses (multiple stresses) on soil biochemical conditions and the role of organic matter addition in these interactions are...

متن کامل

Changes in Soil Organic Carbon, Nitrogen and Phosphorus in Modified and Native Rangeland Communities (Case study: Sisab Rangelands, Bojnord)

Converting the native rangelands to simplified agronomic communities causessome changes in soil carbon, nitrogen and phosphorus. Establishing of perennial plantcommunities on formerly cultivated rangelands is expected to stabilize soil properties andincrease the amount of C, N, P stored in rangeland soils, but there is little information on whatplant communities are the most effective for impro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007